summaryRiskLot generic function to print the risk summary statistics at lot level
Source:R/summaryRiskLot.qraLm.R
summaryRiskLot.qraLm.Rd
Print summary MC risk results per lot
Arguments
- x
qraLm object. See
Lot2LotGen()
- ...
optional plot parameters passed to the plot function
Examples
dat <- Lot2LotGen(
nLots = 500,
sizeLot = 500,
unitSize = 500,
betaAlpha = 0.5112,
betaBeta = 9.959,
C0MeanLog = 1.023,
C0SdLog = 0.3267,
propVarInter = 0.7
)
DRmodel = "JEMRA"
population = 2
res <- DRForModel(dat,
model=DRmodel,
population = population)
str(res)
#> List of 15
#> $ Lot2LotGenParameters:List of 9
#> ..$ nLots : num 500
#> ..$ sizeLot : num 500
#> ..$ unitSize : num 500
#> ..$ betaAlpha : num 0.511
#> ..$ betaBeta : num 9.96
#> ..$ C0MeanLog : num 1.02
#> ..$ C0SdLog : num 0.327
#> ..$ propVarInter: num 0.7
#> ..$ Poisson : logi FALSE
#> $ lotMeans : num [1:500] 0.0102 0.1726 0.0862 0.7233 0.0857 ...
#> $ unitsCounts : num [1:250000] 0 0 0 0 0 ...
#> $ N : num [1:500, 1:500] 0 0 0 0 0 ...
#> $ ProbUnitPos : num [1:500] 0.000725 0.996398 0.994545 1 0.999794 ...
#> $ P : num 0.868
#> $ betaGen : num [1:500] 1.45e-06 1.12e-02 1.04e-02 5.60e-02 1.68e-02 ...
#> $ nLots : num 500
#> $ sizeLot : num 500
#> $ unitSize : num 500
#> $ Risk : num [1:500, 1:500] 0 0 0 0 0 ...
#> $ lotMeanRisk : num [1:500] 3.93e-15 9.11e-11 4.54e-11 3.83e-10 4.54e-11 ...
#> $ servingRisk : num [1:500, 1:500] 0 0 0 0 0 ...
#> $ Model : chr "JEMRA"
#> $ Population : num 2
#> - attr(*, "class")= chr "qraLm"
summaryRiskLot.qraLm(res)