Skip to contents

Plot risk distribution per contaminated lot

Usage

plotLotRisk.qraLm(x, ...)

Arguments

x

qraLm object see Lot2LotGen()

...

optional plot parameters passed to the plot function

Author

Vasco Cadavez

Examples


prod <- Lot2LotGen(
                   nLots = 1000,
                   sizeLot = 1000,
                   unitSize = 500,
                   betaAlpha = 0.5112,
                   betaBeta = 9.959,
                   C0MeanLog = 1.023,
                   C0SdLog = 0.3267,
                   propVarInter = 0.7
                   )
DRmodel <- "JEMRA"
population <- 2
risk <- DRForModel(prod,
                   model = DRmodel,
                   population = population)
str(risk)
#> List of 15
#>  $ Lot2LotGenParameters:List of 9
#>   ..$ nLots       : num 1000
#>   ..$ sizeLot     : num 1000
#>   ..$ unitSize    : num 500
#>   ..$ betaAlpha   : num 0.511
#>   ..$ betaBeta    : num 9.96
#>   ..$ C0MeanLog   : num 1.02
#>   ..$ C0SdLog     : num 0.327
#>   ..$ propVarInter: num 0.7
#>   ..$ Poisson     : logi FALSE
#>  $ lotMeans            : num [1:1000] 0.118 0.0113 1.694 1.3366 0.0128 ...
#>  $ unitsCounts         : num [1:1000000] 0 0 0 0 0 0 0 0 0 0 ...
#>  $ N                   : num [1:1000, 1:1000] 0 0 0 0 0 0 0 0 0 0 ...
#>  $ ProbUnitPos         : num [1:1000] 1 0.9843 1 1 0.0697 ...
#>  $ P                   : num 0.907
#>  $ betaGen             : num [1:1000] 1.38e-02 4.14e-03 1.40e-01 1.39e-01 7.23e-05 ...
#>  $ nLots               : num 1000
#>  $ sizeLot             : num 1000
#>  $ unitSize            : num 500
#>  $ Risk                : num [1:1000, 1:1000] 0 0 0 0 0 0 0 0 0 0 ...
#>  $ lotMeanRisk         : num [1:1000] 6.25e-11 5.90e-12 8.98e-10 7.08e-10 4.74e-13 ...
#>  $ servingRisk         : num [1:1000, 1:1000] 0 0 0 0 0 0 0 0 0 0 ...
#>  $ Model               : chr "JEMRA"
#>  $ Population          : num 2
#>  - attr(*, "class")= chr "qraLm"
plotLotRisk.qraLm(risk)