The function caHomeRTE()
simulates the growth of L. monocytogenes in RTE diced cantaloupe at home,
and is based on the function caGrowthBaranyi()
. The algorithm samples home storage time and temperature
at the unit level since they depend on the consumer. The input data
provides the algorithm with the lot-specific values of EGR5
and the unit-specific values of lnQt
obtained from the previous logistics stage. Pert distributions represent the variability
in home storage time and temperature.
Usage
caHomeRTE(
data = list(),
MPD = NULL,
Tmin = -2.0196,
tempMin,
tempMode,
tempMax,
timeMin,
timeMode,
timeMax
)
Arguments
- data
a list of:
- N
(
CFU
) A matrix containing the numbers of L. monocytogenes in packs of RTE diced cantaloupe at the end of transport to retail, from contaminated lots;- P
Prevalence of contaminated lots (scalar);
- lnQt
Natural log of the
Q
parameter at the end of transport to retail (matrix);- lotEGR5
(\(h^{-1}\)) Growth rate of L. monocytogenes in cantaloupe flesh specific to every lot (vector);
- unitSize
(
g
) Weight of a pack of cantaloupe dices.
- MPD
(log10 CFU/g) Maximum population density of L. monocytogenes in cantaloupe flesh (scalar).
- Tmin
(\(^\circ C\)) Nominal minimum temperature for growth of L. monocytogenes in cantaloupe flesh (suggested \(value=-2.0196\ ^\circ C\)) (scalar).
- tempMin
(\(^\circ C\)) Minimum retail temperature (scalar) (suggested \(value=3.10\ ^\circ C\)) (scalar).
- tempMode
(\(^\circ C\)) Mode of the retail temperature (scalar) (suggested \(value=6.64\ ^\circ C\)) (scalar).
- tempMax
(\(^\circ\) C) Maximum retail temperature (scalar) (suggested \(value=11.3\ ^\circ C\)) (scalar).
- timeMin
(
h
) Minimum retail time (scalar).- timeMode
(
h
) Mode of the retail time (scalar).- timeMax
(
h
) Maximum retail time (scalar).
Value
A list of two elements:
- N
(
CFU
) A matrix containing the numbers of L. monocytogenes in packs of RTE diced cantaloupe at the point of consumption, from contaminated lots;- P
Prevalence of RTE diced cantaloupe lots contaminated with L. monocytogenes (scalar).
Note
The suggested parameters for the Pert distribution of retail temperature are taken from Carrasco et al. (2010)
,
Ding et al. (2013)
and Nauta et al. (2003)
: \(tempMin=3.10\ ^\circ C\), \(Temp\_mode=6.64\ ^\circ C\)
and \(Temp\_max=11.3\ ^\circ C\).
The parameter \(Tmin=-2.0196\ ^\circ C\) was determined from fitting a square-root model to data extracted from multiple sources
(refer to the function caGrowthBaranyi()
).
Parameters for the home storage time distribution should be defined by the user and/or tested in scenarios.
References
Pouillot R, Delignette-Muller M (2010). “Evaluating variability and uncertainty in microbial quantitative risk assessment using two R packages.” International Journal of Food Microbiology, 142(3), 330-40.
Carrasco E, Pérez-Rodríguez F, Valero A, García-Gimeno RM, Zurera G (2010). “Risk Assessment and Management of Listeria Monocytogenes in Ready-to-Eat Lettuce Salads.” Comprehensive reviews in food science and food safety, 9(5), 498-512. ISSN 1541-4337 1541-4337, doi:10.1111\%2fj.1541-4337.2010.00123.x .
Ding T, Iwahori J, Kasuga F, Wang J, Forghani F, Park M, Oh D (2013). “Risk assessment for Listeria monocytogenes on lettuce from farm to table in Korea.” Food Control, 30(1), 190-199. doi:doi=10.1016\%2fj.foodcont.2012.07.014 .
Nauta MJ, Litman S, Barker GC, Carlin F (2003). “A retail and consumer phase model for exposure assessment of Bacillus cereus.” International Journal of Food Microbiology, 83, 205-218.
Author
Ursula Gonzales-Barron ubarron@ipb.pt
Examples
timeMin <- 0.25
timeMode <- 3
timeMax <- 24
nLots <- 1000
sizeLot <- 250
N <- matrix(320, nLots, sizeLot)
N[2, ] <- 0
lnQt <- matrix(3.5, nLots, sizeLot)
lnQt[2, ] <- 0
data <- list(
N = N, lnQt = lnQt,
lotEGR5 = extraDistr::rtnorm(nLots, 0.03557288, 0.004, a = 0),
P = 0.4, unitSize = 200
)
AtConsumption <- caHomeRTE(data,
MPD = 8.5, Tmin = -2.0196,
tempMin = 3.1, tempMode = 6.64, tempMax = 11.3,
timeMin, timeMode, timeMax
)
hist(AtConsumption$N)